Устройство и принцип работы системы ABS

Антиблокировочная тормозная система (ABS) – это электрогидравлическая система активной безопасности, позволяющая сохранить управляемость и устойчивость автомобиля при торможении за счет предотвращения блокировки колес. АБС особенно эффективна на дорожных покрытиях с невысоким коэффициентом сцепления, а также при плохой погоде (снег, гололед, дождь). Расшифровка аббревиатуры ABS – Antilock Brake System, что дословно переводится как «антиблокировочная система тормозов». Рассмотрим принцип работы системы, ее основные составляющие, поколения, а также плюсы и минусы использования.

История создания ABS

Итак, своим появлением антиблокировочные системы обязаны работам конструкторов над улучшением активной безопасности автомобиля. Первые варианты ABS были представлены еще в начале 70-х. Они вполне справлялись с возложенными обязанностями, но были построены на аналоговых процессорах, а потому оказались дорогостоящими в производстве и ненадежными в эксплуатации. Далее изготовления опытных образцов дело не продвинулось, хотя, в любом случае, это был, безусловно, шаг вперед.

Лед тронулся, и следующим шагом конструкторов стала замена аналогового процессора более надежными и недорогими цифровыми электронными блоками на интегральных схемах. В 1978 году ABS второго поколения увидела свет, и первым автомобилем, получившим ее (правда, не в базовой комплектации, а под заказ за дополнительную плату), стал Mercedes-Benz 450 SEL. А сегодня уже трудно подсчитать как количество поколений ABS, так и число автомобилей, на которые антиблокировочная система устанавливается серийно.

Какие были генерации антиблокировочной системы?Принцип работы - фото 14

Прогресс не стоял на месте и понятное дело, что с развитием цифровых технологий, и автомобилей, развивалась антиблокировочная система тормозов. Как уже говорили, первым поколением считается 1970 год, когда впервые создали ABS. Работоспособность оставляла ожидать лучшего, так как ведущая ось блокировалась, а сам механизм системы работал не долгое время и быстро приходил в негодность.

Второе поколение пришлось на 1978 год. Начиная с этого года, на автомобили Mercedes-Benz S-Class и BMW 7-Series начали устанавливать механизм ABS, как стандартную опцию. Стоит отметить, что работоспособность механизма была на высоте для тех лет и показывала отличные результаты работы. Теперь основной задачей инженеров было уменьшение габаритов и компонентов системы.

Третье поколение системы ABS выделяют выходом новой системы 2E в 1980-ом году. Основное отличие в том, что вес гидравлического блока уменьшился до 4,9 кг, а до этого был 6,3 кг. Аналогично уменьшилось и количество элементов, вместо 140 стало только 40 элементов.

Четвертая генерация антиблокировочной системы ABS приходится на 1995-ый год, когда появилась версия 5,3. Очередное уменьшение веса привело к показателям 2,6 кг и 25 компонентов вместо 40-ка. Пятое поколение считают в 2003 году, с выходом системы ABS 8. Инженеры обошли первую генерацию большим кругом, вес блока составил 1,6 кг, а количество элементов 16.

Последнее шестое поколение приходится на 2010 год. Именно в этом году компания Bosch производит ABS, где гидравлический блок весит 1,1 кг, а количество элементов составляет всего 9 деталей. Этот же год считается моментом старта компании Bosch в направлении систем безопасности (активных и пассивных). По всей вероятности, в 2020 году Бош представит доработанную систему, тем самым выделив новое поколение. Предполагают, что в основе будет только электроника, которая сможет паразитировать на существующих механизмах автомобиля.

Как работает система ABS?

Рассмотрев, с чего состоит антиблокировочная система, и её основные элементы, рассмотрим принцип работы. Работа ABS циклическая, каждый цикл состоит из трех основных фаз: увеличение давления в тормозной системе, удержание давления и сброс давления. Ходит такое мнение, что ABS самостоятельно повышает давление в тормозном механизме, на самом же деле это не так и давление повышается только с помощью водителя (если говорить о чистом виде ABS, без ESP).

Первый этап – это повышение давления водителем. В таком случае давление в тормозной системе повышается естественным путем, за счет нажатия водителем на педаль тормоза. Как правило, впускные клапана открыты, а выпускные закрыты. Система считывает данные с датчиков на колесах. Если скорость вращения колеса быстро замедляется, в сравнении с запрограммированными данными, то блок управления ABS переводит впускной клапан определенного колеса в закрытое положение, при этом выпускной клапан так же находится в закрытом режиме.

После закрытия впускного клапана, проходит второй этап. Определив, какое колесо тормозит больше всех, механизм отключает тормозной цилиндр от его рабочей задачи, а так же рабочий контур тормозной системы. Стоит понимать, что даже при более интенсивном нажатии на педаль тормоза, давление в системе не будет увеличиваться.

Антиблокировочная система самостоятельно подбирает максимально эффективное давление. Так же механизм ведет контроль скорости вращения колес, до момента стабилизации или полной остановки. В случае, когда вращение колес будет ниже допустимого, механизм автоматически откроет выпускной клапан и сбросит давление, тем самым полностью избавив определенных механизм от торможения.

Фаза нормального торможения - изображение 16Последний этап работы антиблокировочной системы – сброс давления. На данном этапе система открывает выпускной клапан, за счет чего давление в определенном контуре резко понижается (на определенное колесо или сторону). Жидкость из выпускного цилиндра сначала попадает в гидроаккумулятор, а далее за счет насоса выкачивается обратно в ресивер.

Впускной клапан должен быть закрытым, иначе насос не сработает. Все это время систем считывает частоту оборотов колеса, после стабилизации и возвращения к допустимым значениям, выпускной клапан автоматически закрывается. Отработав весь перечисленный процесс, впускной клапан вновь открывается и весь цикл начинается с начала.

Такой цикл работы антиблокировочной системы будет повторяться до полной стабилизации вращения колес. Чтоб понимать, за одну секунду механизм ABS может отработать до 6-ти циклов. Отключить работу ABS нельзя, не вмешиваясь в конструкцию тормозного механизма. Отключение ABS может привести к непоправим последствиям. Производитель изначально рассчитывал тормозную систему с использованием данного механизма.

В состав антиблокировочной тормозной системы входят:

  • Датчики частоты вращения колес. Датчики работают на основе эффекта Холла и установлены на ступице каждого колеса. Они определяют скорость вращения колес и передают сигнал в блок управления АБС.
  • Блок управления. Основная функция электронного блока управления (ЭБУ) – обеспечить работу тормозной системы в наиболее эффективном и стабильном диапазоне, при котором тормозная сила будет максимальна, а колеса автомобиля не будут заблокированы. Для этого блок управления проводит непрерывные вычисления изменения скорости вращения колес (замедления). На основании данных показателей формируются управляющие сигналы для исполнительных устройств: насоса и электромагнитных клапанов гидравлического блока.
  • Гидравлический блок. Этот компонент ABS является исполнительным устройством. Гидравлический блок включает в себя электромагнитные клапаны (впускные и выпускные), гидроаккумуляторы, кулачковый насос с электрическим двигателем, демпфирующие камеры.

Электромагнитные клапаны управляют процессом торможения, каждый в своем контуре. Для каждого рабочего тормозного цилиндра предполагается пара клапанов (один впускной и один выпускной). Гидроаккумуляторы предназначены для ускорения сброса давления в тормозном контуре. Они наполняются тормозной жидкостью во время открытия выпускных клапанов. Далее в работу включается кулачковый насос, который откачивает тормозную жидкость обратно в главный тормозной цилиндр. Именно по этой причине при работе системы АБС водителем ощущаются толчки в педаль тормоза. Демпфирующие камеры гасят колебания жидкости при работе системы. Так как в автомобиле два контура гидропривода тормозной системы, в гидравлический блок, как правило, интегрируют два аккумулятора давления и две демпфирующие камеры.

Электронный блок —  управляющий элемент. Он по поступающим от датчиков сигналам определяет скорость вращения каждого колеса на основе полученной информации подает сигналы на исполнительный модуль для внесения коррективов в работу тормозной системы.

Устройство и основные компоненты системы

Компоненты системы ABS

В состав антиблокировочной тормозной системы входят:

  • Датчики частоты вращения колес. Датчики работают на основе эффекта Холла и установлены на ступице каждого колеса. Они определяют скорость вращения колес и передают сигнал в блок управления АБС.
  • Блок управления. Основная функция электронного блока управления (ЭБУ) – обеспечить работу тормозной системы в наиболее эффективном и стабильном диапазоне, при котором тормозная сила будет максимальна, а колеса автомобиля не будут заблокированы. Для этого блок управления проводит непрерывные вычисления изменения скорости вращения колес (замедления). На основании данных показателей формируются управляющие сигналы для исполнительных устройств: насоса и электромагнитных клапанов гидравлического блока.
  • Гидравлический блок. Этот компонент ABS является исполнительным устройством. Гидравлический блок включает в себя электромагнитные клапаны (впускные и выпускные), гидроаккумуляторы, кулачковый насос с электрическим двигателем, демпфирующие камеры.Электромагнитные клапаны управляют процессом торможения, каждый в своем контуре. Для каждого рабочего тормозного цилиндра предполагается пара клапанов (один впускной и один выпускной). Гидроаккумуляторы предназначены для ускорения сброса давления в тормозном контуре. Они наполняются тормозной жидкостью во время открытия выпускных клапанов. Далее в работу включается кулачковый насос, который откачивает тормозную жидкость обратно в главный тормозной цилиндр. Именно по этой причине при работе системы АБС водителем ощущаются толчки в педаль тормоза. Демпфирующие камеры гасят колебания жидкости при работе системы. Так как в автомобиле два контура гидропривода тормозной системы, в гидравлический блок, как правило, интегрируют два аккумулятора давления и две демпфирующие камеры.

Устройство и работа датчика ABS

В тормозной системе ABS применяются датчики частоты вращения колеса (скорости) и датчики давления.

В качестве датчиков частоты вращения колес в системе ABS применяются пассивные и активные колесные датчики.

Датчики обоих типов позволяют системе получать данные о скорости движения автомобиля и, что важнее, о частоте вращения отдельных колес. На основании разницы в скорости вращения отдельных колес система может, например, установить, не находятся ли разные колеса на дорожном покрытии с разным коэффициентом сцепления, что означало бы для автомобиля потенциальную опасность при торможении попасть в сложную динамическую ситуацию.

Пассивные датчики работают без собственного электропитания, чем и объясняется их название. Как правило, в таких датчиках используется индуктивный чувствительный элемент.

Для любого измерения частоты вращения необходимы два элемента: чувствительный и задающий. Чувствительный элемент датчика выполнен в виде катушки 3 с железным сердечником (магнитопроводом) 4 и соприкасающимся с ним постоянным магнитом 5. Задающий элемент 2 представляет собой кольцо с зубьями (задающее кольцо или ротор) (рис. 9).

Рис. 9. Пассивный датчик частоты вращения: а — общий вид; б — низкая частота вращения; в — высокая частота вращения; 1 — магнитное поле; 2 — задающий элемент (металлическое кольцо с зубьями); 3 — катушка; 4 — железный сердечник (магнитопровод); 5 — постоянный магнит; 6 — чувствительный элемент; 7 — осциллограмма при низкой частоте вращения; 8 — осциллограмма при высокой частоте вращения

Любой железный объект, проходя через магнитное поле датчика, изменяет форму и напряженность этого поля. В результате изменения магнитного поля в катушке датчика, в соответствии с законом электромагнитной индукции, возникает ЭДС, измерение которой позволяет зафиксировать факт изменения магнитного поля. От принципа работы происходит и название датчиков такого типа — индуктивные.

Интенсивность магнитного потока, проходящего через обмотку, зависит от того, находится ли датчик напротив зуба на диске или напротив промежутка (пропуска зубьев). Поскольку магнитный поток концентрируется зубьями диска, из-за чего увеличивается магнитный поток через обмотку, то при подходе пропуска зубьев он ослабевает. Следовательно, при вращении зубчатого диска возникают колебания магнитного потока, которые, в свою очередь, генерируют синусоидальные колебания напряжения в электромагнитной обмотке, пропорциональные скорости изменения магнитного потока. Амплитуда колебаний переменного напряжения увеличивается строго пропорционально увеличению скорости вращения зубчатого диска.

Прохождение через магнитное поле датчика каждого из зубьев задающего ротора индуцирует, таким образом, напряжение в цепи катушки датчика. Подсчет числа импульсов напряжения за определенный интервал времени (частота) позволяет системе рассчитать частоту вращения или скорость колеса.

Преимуществом пассивных индуктивных датчиков частоты вращения является простота их конструкции. Недостаток же заключается в том, что для их работы необходимо с высокой точностью обеспечить определенный зазор между задающим ротором и датчиком. Кроме того, пассивные индуктивные датчики частоты вращения имеют большую массу и размеры, соответственно требуют много места для установки.

От частоты вращения задающего ротора зависит не только частота импульсов, но и их величина (напряжение), поэтому при небольших частотах вращения пассивный датчик дает сигнал меньшей величины, чем активный.

Активные датчики частоты вращения, в отличие от пассивных, используют для работы внешнее напряжение питания, которое составляет примерно 12 В. Работа чувствительных элементов активных датчиков частоты вращения основана на принципе эффекта Холла или на принципе магниторезистивного эффекта.

Активные датчики также состоят из двух компонентов: чувствительного и задающего (рис. 10). Чувствительный компонент включает датчик магнитного поля и электронную схему. Задающий элемент представляет собой пластмассовое кольцо, участки поверхности которого намагничены в противоположных направлениях (магнитное кольцо). Северный и южный полюса магнитов выполняют функции зубцов и впадин колеса.

Рис. 10. Активный датчик частоты вращения: а — общий вид; б — низкая частота вращения; в — высокая частота вращения; 1 — задающий элемент; 2 — электронная схема датчика; 3 — корпус датчика; 4 — осциллограмма; 5 — датчик магнитного поля

Принцип действия основан на квантовомеханическом эффекте, создаваемом слоями ферромагнитного и неферромагнитного материала (сопротивление сильно увеличивается или ослабевает).

При прохождении датчика магнитного поля через изменяющееся магнитное поле изменяется и возникающая в нем ЭДС Холла, а для магниторезистивных датчиков изменяется его сопротивление. Чем быстрее намагниченные участки магнитного кольца проходят мимо датчика магнитного поля, тем быстрее изменяется и ЭДС (напряжение) Холла. Частота вращения колеса с датчиками этого типа, так же как и с пассивными, определяется исходя из частоты изменения напряжения.

Активные датчики дают одинаково точные результаты во всем диапазоне частот, поскольку сила их сигнала не зависит от измеряемой частоты, а определяется собственным током датчика. Кроме того, активный датчик имеет компактную конструкцию, что позволяет устанавливать его непосредственно в ступичном подшипнике. Цифровая обработка выходного сигнала дает дополнительные преимущества, например позволяет использовать датчик для определения направления вращения колеса и его остановки. Важным преимуществом также является высокая точность определения низких скоростей вращения.

Недостатком таких датчиков является трудность проверки их исправности с помощью омметра.

 

Датчики частоты вращения колеса могут крепиться на валу привода колеса, на валу привода конических шестерен для заднеприводных моделей автомобиля, на поворотных цапфах (рис. 11, а) и внутри ступицы колеса (рис. 11, б).

В качестве датчиков давления в системе ABS применяются пьезоэлектрические и емкостные датчики.

Рис. 11. Датчики частоты вращения колеса и их установка: а — крепление индуктивного датчика на поворотной цапфе; б — крепление индуктивного датчика внутри ступицы колеса; 1 — тормозной диск; 2 — передняя ступица; 3 — защитный кожух; 4 — винт с внутренним шестигранным зацеплением; 5 — датчик; 6 — поворотная цапфа; 7 — фланец крепления колеса; 8 — шарики; 9 — кольцо датчика; 10 — фланец крепления к подвеске

Пьезоэлектрический датчик давления крепится к гидравлическому блоку и служит для определения и передачи в ЭБУ значения давления в тормозной системе при торможении. По полученному значению БУ рассчитывает тормозные усилия на колесах и продольную силу, действующую на ТС. При необходимости выполнения управляющего цикла полученное значение используется блоком управления для расчета сил, действующих на ТС в повороте.

Основными компонентами датчика являются пьезоэлектрический элемент 2, находящийся под давлением тормозной жидкости, и электронная часть 1 (рис. 12).

Рис. 12. Пьезоэлектрический датчик давления

Под действием давления тормозной жидкости распределение заряда в пьезоэлектрическом элементе меняется, и величина напряжения зависит от давления в тормозной системе.

В качестве датчика давления жидкости в тормозной системе может использоваться также емкостный датчик (рис. 13).

Рис. 13. Емкостный датчик давления: а — общая схема датчика; б — увеличение давления жидкости; в — снижение давления жидкости; 1 — датчик; s1, s2 — расстояние между пластинами; C1, C2 — емкость конденсатора

Конденсатор обладает способностью накапливать и удерживать определенный электрический заряд. Расстояние s между двумя пластинами обеспечивает некоторую емкость конденсатора C.

Одна из пластин является неподвижной. Вторая пластина может перемещаться под воздействием давления, производимого тормозной жидкостью.

При воздействии давления на подвижную пластину расстояние между двумя пластинами уменьшается и становится равным s1, а емкость конденсатора при этом увеличивается и становится равной C1.

В случае понижения давления пластина отходит обратно под действием пружины, емкость конденсатора снова уменьшается. Следовательно, изменение емкости прямо связано с изменением давления.